Hopf algebras and skew PBW extensions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS

A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...

متن کامل

Jacobson’s conjecture and skew PBW extensions

The aim of this paper is to compute the Jacobson’s radical of skew PBW extensions over domains. As a consequence of this result we obtain a direct relation between these extensions and the Jacobson’s conjecture, which implies that skew PBW extensions over domains satisfy this conjecture.

متن کامل

Hopf Algebra Extensions of Monogenic Hopf Algebras

William M. Singer has described a cohomology theory of connected Hopf algebras which classifies extensions of a cocommutative Hopf algebra by a commutative Hopf algebra in much the same way as the cohomology of groups classifies extensions of a group by an abelian group. We compute these cohomology groups for monogenic Hopf algebras, construct an action of the base ring on the cohomology groups...

متن کامل

Pbw Deformations of Skew Group Algebras in Positive Characteristic

We investigate deformations of a skew group algebra that arise from a finite group acting on a polynomial ring. When the characteristic of the underlying field divides the order of the group, a new type of deformation emerges that does not occur in characteristic zero. This analogue of Lusztig’s graded affine Hecke algebra for positive characteristic can not be forged from the template of sympl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CIENCIA EN DESARROLLO

سال: 2019

ISSN: 2462-7658,0121-7488

DOI: 10.19053/01217488.v10.n2.2019.8797